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Forcings and Feedback

NASA’s goal is to understand the observed Earth climate variability,
and determine and predict the climate’s response to both natural and
human-induced forcing.

The basic idea is that changes in one climate subsystem will cause or
force responses in other subsystems.  These responses in turn feed
back to force other subsystems.
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Relevant Variables

One of the greatest difficulties in this field is the identification of the

RELEVANT VARIABLES.



4 of 57 http://esto.nasa.gov

Causal Interactions

Once relevant variables are identified, one can begin examining
their CAUSAL INTERACTIONS, which implement forcings and
feedbacks.

However, these calculations are useless without error bars that
indicate our degree of uncertainty.  Much of the work we propose
to do is aimed toward quantifying our uncertainties.



5 of 57 http://esto.nasa.gov

Outline

Describing Systems

Information Theory

Histogram Methods

Mixture of Gaussians

Deployment Efforts (Ongoing)



6 of 57 http://esto.nasa.gov

Describing Physical Systems

Knuth, MaxEnt 2008
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Describing Physical Systems

States are the most basic description of a system.
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Describing Physical Systems

Statements are sets of potential states.

The space of all statements is the hypothesis space
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Describing Physical Systems

Questions are sets of potential statements.

When a question has been reduced to a single statement, it

has been answered.
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Three Spaces

These three spaces enable us to:

- Describe the system

- Describe what we know about the system

- Describe what we could know about the system

State

Space

Hypothesis

Space

Question

Space

Inference happens here

Measure: Probability

Inquiry happens here

Measure: Entropy
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Expectation and Surprise

When Henry was born, he had

no information about the world.

All things were essentially

equally probable.

He was equally surprised by

everything.

p(x)

x

All states equally probable.
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Expectation and Surprise

Henry now has some idea that

some events are more probable

than others.

He is now sometimes surprised.

p(x)

x

Some states rarely occur!
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Entropy

We use x to denote the state of the system out of a set of possible states X

The surprise is large for improbable states and small for probable states.

Averaging this quantity over all of the possible states of the system gives a
measure of our knowledge about the state of the system

which is called the entropy.
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Joint Entropy

If the system states can be described with multiple parameters, the entropy

is computed by averaging over all possible states

This is called the Joint Entropy, since it describes the entropy of the

states of X and Y, which jointly describe the system.  You can think of X
and Y as representing subsystems of the original system X Y.
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Mutual Information

In this case, an important quantity is the difference of entropies,

This is called the Mutual Information (MI) since it describes the amount of

information that is shared between the two subsystems.

),()()(),( YXHYHXHYXMI +=

X Y
H(X) H(Y)

MI(X,Y)
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If two climate variables are independent, then the joint entropy is

which gives a mutual information of zero, since

While mutual information can identify dependencies, it cannot determine the causal
nature the interaction.

Identifying Relationships
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Relation to Probability Densities

The mutual information can also be written as

Which highlights the fact that this is about the probability density of the

states of the system.

Note that if the joint probability density p(x,y) can be factored into p(x) p(y),

then the mutual information is zero and the two systems X and Y are

independent.
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Transfer Entropy

Recently, Schreiber (2000) introduced a novel information-theoretic
quantity called the Transfer Entropy (TE).  Consider two
subsystems X and Y, with data in the form of a two time series of
measurements

then the transfer entropy can be written as

which describes the degree to which information about Y allows
one to predict future values of X.  This is then a measure of the
causal influence that the subsystem Y has on the subsystem X.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant

variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant

variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant

variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.

2.  Using this probability density, estimate the various necessary entropies.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant

variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.

2.  Using this probability density, estimate the various necessary entropies.

Extremely difficult since not only are we interested in the values of these

quantities, but we are also interested in the associated uncertainties of our

estimates.
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Histograms as Probability Density Models

Histograms can be viewed as simple models of the probability

density from which the data were sampled.

They are convenient since they have regions of constant

probability.
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Histograms

N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100

N = 10000, M = 47 N = 10000, M = 23

The histogram should contain only details warranted by the data.

But how do we choose the Number of Bins?

N = 10000, M = 10
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Posterior for the Number of Bins

By integrating over all possible bin probabilities, we can derive the

posterior probability of the number of bins given the data.
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where K is the implicit proportionality constant.
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optBINS Algorithm

function optM = optBINS(data,minM,maxM)

if size(data)>2 | size(data,1)>1
    error('data dimensions must be (1,N)');
end

N = size(data,2);

% Loop through the different numbers of bins

% and compute the posterior probability for each.

logp = zeros(1,maxM);

for M = minM:maxM

    n = hist(data,M);  % Bin the data (equal width bins here)

    p = 0;
    for k = 1:M

p = p + gammaln(n(k)+0.5);
    end

    logp(M) = N*log(M) + gammaln(M/2) – M*gammaln(1/2) - gammaln(N+M/2) + p;

end

[maximum, optM] = max(logp);

return

Knuth, 2008, In review at Technometrics
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Optimal Histograms

Optimal Binning for N = 3000 Gaussian distributed data points: M = 14
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The Optimal Histogram

The histogram should contain only details warranted by the data.

N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100

N = 10000, M = 47 N = 10000, M = 23 N = 10000, M = 10
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Extendable to Multi-Dimensional Densities

Extendible to multi-dimensional histograms

N = 10000

M = 11,12

optimal sub-optimal
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Entropy Estimation

Entropy estimation is relatively easy with a constant-piecewise model

N = 10000, M = 23

=
i

ii ppH log

H = -sum(p .* (log(p) - log(vol)));



33 of 57 http://esto.nasa.gov

Entropy Estimation

And also in higher-dimensions…

=
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How to Obtain the Uncertainties

To calculate the uncertainties in the entropy estimates, one must

first realize that we are uncertain as to the bin probabilities of the

probability density model.

By sampling a set of bin probabilities, we obtain a set of probable

density functions, along with a set of probable entropies.

From this set of probable

entropies, we can compute

the mean and variance.  Thus

quantifying both the entropy

and our uncertainty.
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Entropies from Sampling

This shows some of the results from sampling from the posterior
probability and computing the entropies.

The data was from a Gaussian distribution with μ = 0,  = 1.

The true entropy is Htrue = 1.419

N = 10000, M = 24

50000 Samples

H =   1.4202

         1.4161

         1.4159

         …

         1.4211

         1.4259

         1.4290

Hest = 1.423 ± 0.007
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Mutual Information

Mutual information requires the estimation of BOTH the two one-
dimensional marginal entropies and two-dimensional joint entropy.  We
can use the same sampling strategy for all cases.

),()()(),( YXHYHXHYXMI +=

H(X) H(Y)

H(X,Y)
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Mixture of Gaussians

Another effective density model is the Mixture of Gaussians (MoG)

Figure from R.A. Choudry 2002
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Mixture of Gaussians and Nested Sampling

We apply Nested Sampling to this problem to describe the density of the

data with a Mixture of Gaussians.

This corresponds to the Likelihood function for a datum x:
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Nested sampling will give us the following:

1. A Set of Sample Density Functions

2. A marginal probability for the number of Gaussians M

3. The entropy of the Posterior
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Animation of Nested Sampling in Action

Here the discarded objects (blue) represent a Mixture of Gaussians (MoG)

model that converges to the ideal probability density (green) of the samples.

In this figure, the samples are for illustrative purposes and were not the real data sample positions
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Examples using 

Mutual Information
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Mutual Information between
ISCCP Cloud Cover and Seasonality
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Preliminary Mutual Information Results

Mutual Information between ISCCP percent cloud cover and Seasonality.

The data consisted of monthly averages of percent cloud cover resulting in a time-series of

198 months of 6596 equal-area pixels each with side length of 280 km.  The analysis was

performed pixel-wise so that for each pixel:

X = cloud cover percentages and Y = month of the year (seasonal state).

The MI was computed for each pixel independently and is color-coded on the map above.

Results based on code by Petr Tichavsky and algorithm by G.A. Darbellay and I. Vajda, IEEE Trans. Info. Theory, 1999

Histogram Model
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Cloud Cover and Seasonality

Mutual Information between ISCCP percent cloud cover and Seasonality.

This method finds the Inter-Tropical Convection Zones, The Monsoon Regions,
the Sea Ice off Antarctica, and cloud cover in the North Atlantic and Pacific.

This figure can be directly compared to the PCA analysis performed by Rossow
et al. 1991, J. Climate, 6:2394-2418.

Histogram Model
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Mutual Information between
ISCCP Cloud Cover and the

Cold Tongue Index

Histogram Model
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Cloud Cover and Cold Tongue Index

Preliminary mutual Information map between ISCCP percent cloud
cover and Cold Tongue Index (CTI), which describes the sea surface
temperature anomalies in the eastern equatorial Pacific Ocean (6N-6S,
180-90W) and is indicative of ENSO variability.

Cloud cover data is from ISCCP C2 and CTI data is from T. Mitchell:

http://tao.atmos.washington.edu/pacs/additional_analyses/sstanom6n6s18090w.html

Histogram Model
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Statistical Significance

Values below line do not indicate statistically significant interactions

Histogram Model
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ISCCP Cloud Cover and ENSO CTI

MoG Model



49 of 57 http://esto.nasa.gov

ISCCP Cloud Cover and ENSO CTI

MoG Model Histogram Model

The Mixture of Gaussians model reveals a greater impact of ENSO CTI

on global cloud cover.

Not only are the equatorial Pacific and Indonesian areas affected, but 

ENSO activity affects cloud cover in the inter-tropical convection zones 

in Africa, India and the eastern coast of South America.
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Deployment

We are currently working on the appropriate way to deploy these new

computational tools.

The optBINS histogramming package is available online in Matlab at:

http://knuthlab.rit.albany.edu/optBINS.html

We have obtained the Java Builder package from Matlab and are

working to design a Graphical User Interface (GUI) Tool that will allow

people to use these tools without programming.

We will be uploading these tools to the NASA AISRP Code and

Algorithm Library.
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Deployment

We are finishing a Web Interface on our servers to provide these

entropy estimation tools to those researchers without access to Matlab

-2.0   0.1

-2.5   0.2

-4.2   0.4

http://knuthlab.rit.albany.edu
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Deployment

We are working with Bill Rossow (CCNY) to work to integrate these

tools with his

International Satellite Cloud Climatology Program (ISCCP)

http://isccp.giss.nasa.gov/

As well as

Gewex Radiation Panel  http://grp.giss.nasa.gov/plans.html

Gewex Cloud System Study–Data Integration

http://gcss-dime.giss.nasa.gov

We feel that to do this effectively, we needed to seriously utilize these

tools in an experimental Earth science project before making them

available in a way that they would be useless.

We are currently working with Bill Rossow on his funded project and to

test these tools at TRL 7 before polishing them up for TRL 8.
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Broader Impact: Robotics

The conceptual, theoretical, and computational advances made in the

course of this work has directly contributed to the application of entropy

in experimental design.

The PI has applied this new computational technology to aid in the

design of a robotic scientist designed to perform automated sensor

placement.  Optimal sensor positions are identified by computing the

entropy of the predicted results.

Knuth K.H., Erner P.M., Frasso S. 2007.

Designing intelligent instruments. K.H. Knuth,

A. Caticha, J.L. Center, A. Giffin, C.C. Rodriguez

(eds.), Bayesian Inference and Maximum Entropy

Methods in Science and Engineering, Saratoga

Springs, NY, USA, 2007, AIP Conference

Proceedings 954, American Institute of Physics,

Melville NY, In press.
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Broader Impact: Spectrometry/Experimental Design

A colleague of the PI, Dr. Keith Earle (University at Albany) is now using

entropy-based methods to design Electron Paramagnetic Resonance

(EPR) experiments.

These results were presented at the ACERT Workshop on Analysis of

ESR Data for Motional Dynamics:

"HFHF ESR and Multifrequency Analysis" by Dr. Keith A. Earle
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Computational techniques that allow us to estimate information-theoretic

quantities from data provide us with a unique opportunity to identify

relationships among data sets in an automated way, and will be

extremely useful in large data sets.

However, it is extremely important that error bars representing our

uncertainties be accurately computed.  This is made more crucial by the

fact that entropies are bounded quantities.

We are working to ensure that these algorithms and techniques

will find great use both within and outside the Earth Science

Community.

SUMMARY
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